Human influence on the temporal dynamics and spatial distribution of forest biomass carbon in China

نویسندگان

  • Weiwei Liu
  • Fei Lu
  • Yunjian Luo
  • Wenjing Bo
  • Lingqiao Kong
  • Lu Zhang
  • Bojie Liu
  • Zhiyun Ouyang
  • Xiaoke Wang
چکیده

Global carbon cycles are impacted by human activity primarily via fossil fuel combustion and forest carbon budget alterations. In this study, the temporal dynamics and spatial distribution of forest biomass carbon (FBC) stock and density in China were analyzed to assess the large-scale effects of humans on FBC. The results indicated that from 1977 to 2013, the FBC stock increased by 62.9%, from 4,335 to 7,064 Tg C, owing to human-driven forestation and ecological restoration programs. Because of intensive human impacts, 44.2%-54.6% of the FBC stock was concentrated in four provinces (Heilongjiang, Yunnan, Inner Mongolia, and Sichuan) and the FBC density increased from the densely populated southeastern provinces to the sparsely populated northeastern and western provinces. On a spatial scale, the FBC density was significantly negatively related to population density, and the degree of the dependence of the FBC density on population density has been declining since 1998. This improvement in human-forest relations is related to economic development and programs in China that have promoted forestation and reduced deforestation. These results suggest that human impacts, including forestation, deforestation, population density, and economic development, have played significant roles in determining the temporal and spatial variations of FBC in the anthropogenic era. Moreover, our findings have implications for forest management and improvement of the forest carbon sink in China.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temporal-Spatial Variation and Controls of Soil Respiration in Different Primary Succession Stages on Glacier Forehead in Gongga Mountain, China

Soil respiration (SR) is an important process in the global carbon cycle. It is difficult to estimate SR emission accurately because of its temporal and spatial variability. Primary forest succession on Glacier forehead provides the ideal environment for examining the temporal-spatial variation and controlling factors of SR. However, relevant studies on SR are relatively scarce, and variations,...

متن کامل

Comparison of Geographically Weighted Regression and Regression Kriging to Estimate the Spatial Distribution of Aboveground Biomass of Zagros Forests

Aboveground biomass (AGB) of forests is an essential component of the global carbon cycle. Mapping above-ground biomass is important for estimating CO2 emissions, and planning and monitoring of forests and ecosystem productivity. Remote sensing provides wide observations to monitor forest coverage, the Landsat 8 mission provides valuable opportunities for quantifying the distribution of above-g...

متن کامل

Temporal and spatial distribution pattern of Bullacta exarata in a tidal flat at south shore of Hangzhou Bay, China

The distribution pattern of Bullacta exarata was studied in different seasons of 2004 at south shore of Hangzhou Bay, China. We found that the distribution pattern of B. exarata was aggregated in each season by Taylor's power regression and Iwao's plot regresses methods (P < 0.001). Based on two-way ANOVA analysis, the results indicated that the densities were significantly affected by the fact...

متن کامل

Spatial and Temporal Distribution of Zooplankton Biomass in the Northeast Persian Gulf

The zooplankton biomass and distribution were studied during two oceanographic cruises in NE part of the Persian Gulf in autumn 2012 (November) and summer 2013 (August) with 300 μmmesh net. Zooplankton samples were analyzed for biomass content. Zooplankton biomass expressed as mg m-3 dry wt., was greatest during summer cruise (mean of 18.8 ± 4.6 mg m-3 dry wt.). The mean zooplankton bioma...

متن کامل

Impact of spatial-temporal variations of climatic variables on summer maize yield in North China Plain

Summer maize (Zea mays L.) is one of the dominant crops in the North China Plain (NCP). Its growth is greatly influenced by the spatial-temporal variation of climatic variables, especially solar radiation, temperature and rainfall. The WOFOST (version 7.1) model was applied to evaluate the impact of climatic variability on summer maize yields using historical meteorological data from 1961 to 20...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017